Part Number Hot Search : 
PN16229 133821 V54C3 HD74AL HGT1S HGT1S SZ655B CM6400
Product Description
Full Text Search
 

To Download TSZ124IQ4T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. may 2014 docid023563 rev 4 1/40 tsz121, tsz122, tsz124 very high accuracy (5 v) zero drift micropower 5 v operational amplifiers datasheet - production data features ? very high accuracy and stability: offset voltage 5 v max at 25 c, 8 v over full temperature range (-40 c to 125 c) ? rail-to-rail input and output ? low supply voltage: 1.8 - 5.5 v ? low power consumption: 40 a max. at 5 v ? gain bandwidth product: 400 khz ? high tolerance to esd: 4 kv hbm ? extended temperature range: -40 to +125 c ? micro-packages: sc70-5, dfn8 2x2, and qfn16 3x3 benefits ? higher accuracy without calibration ? accuracy virtually unaf fected by temperature change related products ? see tsv711 or tsv731 for continuous-time precision amplifiers applications ? battery-powered applications ? portable devices ? signal conditioning ? medical instrumentation description the tsz12x series of high precision operational amplifiers offer very low input offset voltages with virtually zero drift. tsz121 is the single version, tsz122 the dual version, and tsz124 the quad version, with pinouts compatible with industry standards. the tsz12x series offers rail-to-rail input and output, excellent speed/po wer consumption ratio, and 400 khz gain bandwidth product, while consuming less than 40 a at 5 v. the devices also feature an ultra-low input bias current. these features make the tsz12x family ideal for sensor interfaces, battery-powered applications and portable applications. 6lqjoh 76= 'xdo 76= 4xdg 76= 6& 627 ')1[ 0lql62 62 4)1[ 76623 www.st.com
contents tsz121, tsz122, tsz124 2/40 docid023563 rev 4 contents 1 package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 absolute maximum ratings and operating c onditions . . . . . . . . . . . . . 5 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 operation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.1 time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.2 frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 input pin voltage ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4 rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5 input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 21 4.6 rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.7 capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 pcb layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.9 optimized application recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.10 emi rejection ration (emirr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.11 application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.11.1 oxygen sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.11.2 precision instrumentation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.11.3 low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 sc70-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 sot23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 dfn8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4 miniso8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.5 so8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.6 qfn16 3x3 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.7 tssop14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
docid023563 rev 4 3/40 tsz121, tsz122, tsz124 contents 40 6 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
package pin connections tsz121, tsz122, tsz124 4/40 docid023563 rev 4 1 package pin connections figure 1. pin connections for each package (top view) 1. the exposed pads of the dfn8 2x2 and the qfn 16 3x3 can be connected to vcc- or left floating. sc70-5 sot23-5 9&& ,1 287 9&& ,1       9&& ,1 287 9&& ,1        9&& ,1 287 9&& ,1     287 ,1 ,1        dfn8 2x2 miniso8 and so8 ,1 9&& 1& ,1 ,1 9&& 1& ,1 ,1 287 287 ,1 ,1 287 287 ,1                1&  qfn16 3x3 tssop14 9&& 9&& 287 ,1 ,1 287 ,1 ,1         1& 
docid023563 rev 4 5/40 tsz121, tsz122, tsz124 absolute maxi mum ratings and operating conditions 40 2 absolute maximum ratings and operating conditions table 1. absolute maximum ratings (amr) symbol parameter value unit v cc supply voltage (1) 1. all voltage values, except differential voltage, are with respect to network ground terminal. 6 v v id differential input voltage (2) 2. the differential voltage is the non-inverting input term inal with respect to the inverting input terminal. v cc v in input voltage (3) 3. v cc - v in must not exceed 6 v, v in must not exceed 6 v. v cc- - 0.2 to v cc+ + 0.2 i in input current (4) 4. input current must be limited by a resistor in series with the inputs. 10 ma t stg storage temperature -65 to +150 c r thja thermal resistance junction-to-ambient (5)(6) 5. short-circuits can c ause excessive heating and destructive dissipation. 6. r th are typical values. c/w sc70-5 205 sot23-5 250 dfn8 2x2 57 miniso8 190 so8 125 qfn16 3x3 39 tssop14 100 t j maximum junction temperature 150 c esd hbm: human body model (7) 7. human body model: 100 pf discharged through a 1.5 k resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 4kv mm: machine model (8) 8. machine model: a 200 pf cap is charged to the spec ified voltage, then discharged directly between two pins of the device with no external se ries resistor (internal resistor < 5 ), done for all couples of pin combinations with other pins floating. 300 v cdm: charged device model (9) 9. charged device model: all pins plus package ar e charged together to the specified voltage and then discharged directly to ground. 1.5 kv latch-up immunity 200 ma table 2. operating conditions symbol parameter value unit v cc supply voltage 1.8 to 5.5 v v icm common mode input voltage range v cc- - 0.1 to v cc+ + 0.1 t oper operating free air temperature range -40 to +125 c
electrical characteristics tsz121, tsz122, tsz124 6/40 docid023563 rev 4 3 electrical characteristics table 3. electrical characteristics at v cc+ = 1.8 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit dc performance v io input offset voltage t = 25 c 1 5 v -40 c < t< 125 c 8 v io / t input offset voltage drift (1) -40 c < t< 125 c 10 30 nv/c i ib input bias current (v out = v cc /2) t = 25 c 50 200 (2) pa -40 c < t< 125 c 300 (2) i io input offset current (v out = v cc /2) t = 25 c 100 400 (2) -40 c < t< 125 c 600 (2) cmr common mode rejection ratio 20 log ( v icm / v io ), v ic = 0 v to v cc , v out = v cc /2, r l > 1 m t = 25 c 110 122 db -40 c < t< 125 c 110 a vd large signal voltage gain v out = 0.5 v to (v cc - 0.5 v) t = 25 c 118 135 -40 c < t< 125 c 110 v oh high level output voltage t = 25 c 30 mv -40 c < t< 125 c 70 v ol low level output voltage t = 25 c 30 -40 c < t< 125 c 70 i out i sink (v out = v cc ) t = 25 c 7 8 ma -40 c < t< 125 c 6 i source (v out = 0 v) t = 25 c 5 7 -40 c < t< 125 c 4 i cc supply current (per channel, v out = v cc /2, r l > 1 m ) t = 25 c 28 40 a -40 c < t< 125 c 40 ac performance gbp gain bandwidth product r l = 10 k , c l = 100 pf 400 khz f u unity gain frequency 300 m phase margin 55 degrees g m gain margin 17 db sr slew rate (3) 0.17 v/ s t s settling time to 0.1%, v in = 1 vp-p, r l = 10 k , c l = 100 pf 50 s e n equivalent input noise voltage f = 1 khz f = 10 khz 60 60 nv hz ----------- -
docid023563 rev 4 7/40 tsz121, tsz122, tsz124 electrical characteristics 40 c s channel separation f = 100 hz 120 db t init initialization time t = 25 c 50 s -40 c < t< 125 c 100 1. see section 4.5: input offset voltage drift over temperature . input offset measurements are performed on x100 gain configuration. the amplifiers and the gain se tting resistors are at the same temperature. 2. guaranteed by design. 3. slew rate value is calculated as the average between positive and negative slew rates. table 3. electrical characteristics at v cc+ = 1.8 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) (continued) symbol parameter conditions min. typ. max. unit
electrical characteristics tsz121, tsz122, tsz124 8/40 docid023563 rev 4 table 4. electrical characteristics at v cc+ = 3.3 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit dc performance v io input offset voltage t = 25 c 1 5 v -40 c < t< 125 c 8 v io / t input offset voltage drift (1) -40 c < t< 125 c 10 30 nv/c i ib input bias current (v out = v cc /2) t = 25 c 60 200 (2) pa -40 c < t< 125 c 300 (2) i io input offset current (v out = v cc /2) t = 25 c 120 400 (2) -40 c < t< 125 c 600 (2) cmr common mode rejection ratio 20 log ( v icm / v io ) v ic = 0 v to v cc , v out = v cc /2 r l > 1 m t = 25 c 115 128 db -40 c < t< 125 c 115 a vd large signal voltage gain v out = 0.5 v to (v cc - 0.5 v) t = 25 c 118 135 -40 c < t< 125 c 110 v oh high level output voltage t = 25 c 30 mv -40 c < t< 125 c 70 v ol low level output voltage t = 25 c 30 -40 c < t< 125 c 70 i out i sink (v out = v cc ) t = 25 c 15 18 ma -40 c < t< 125 c 12 i source (v out = 0 v) t = 25 c 14 16 -40 c < t< 125 c 10 i cc supply current (per channel, v out = v cc /2, r l > 1 m ) t = 25 c 29 40 a -40 c < t< 125 c 40 ac performance gbp gain bandwidth product r l = 10 k , c l = 100 pf 400 khz f u unity gain frequency 300 m phase margin 56 degrees g m gain margin 19 db sr slew rate (3) 0.19 v/ s t s settling time to 0.1%, v in = 1 vp-p, r l = 10 k , c l = 100 pf 50 s e n equivalent input noise voltage f = 1 khz f = 10 khz 40 40 c s channel separation f = 100 hz 120 db nv hz ----------- -
docid023563 rev 4 9/40 tsz121, tsz122, tsz124 electrical characteristics 40 t init initialization time t = 25 c 50 s -40 c < t< 125 c 100 1. see section 4.5: input offset voltage drift over temperature . input offset measurements are performed on x100 gain configuration. the amplifiers and the gain se tting resistors are at the same temperature. 2. guaranteed by design. 3. slew rate value is calculated as the average between positive and negative slew rates. table 4. electrical characteristics at v cc+ = 3.3 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) (continued) symbol parameter conditions min. typ. max. unit
electrical characteristics tsz121, tsz122, tsz124 10/40 docid023563 rev 4 table 5. electrical characteristics at v cc+ = 5 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise specified) symbol parameter conditions min. typ. max. unit dc performance v io input offset voltage t = 25 c 1 5 v -40 c < t< 125 c 8 v io / t input offset voltage drift (1) -40 c < t< 125 c 10 30 nv/c i ib input bias current (v out = v cc/ /2) t = 25 c 70 200 (2) pa -40 c < t< 125 c 300 (2) i io input offset current (v out = v cc/ 2) t = 25 c 140 400 (2) -40 c < t< 125 c 600 (2) cmr common mode rejection ratio 20 log ( v icm / v io ) v ic = 0 v to v cc/ , v out = v cc/ /2 r l > 1 m t = 25 c 115 136 db -40 c < t< 125 c 115 svr supply voltage rejection ratio 20 log ( v cc/ / v io ) v cc/ = 1.8 to 5.5 v, v out = v cc/ /2, r l > 1 m t = 25 c 120 140 -40 c < t< 125 c 120 a vd large signal voltage gain v out = 0.5 v to (v cc - 0.5 v) t = 25 c 120 135 -40 c < t< 125 c 110 emirr (3) emi rejection ratio emirr = - 20 log (v rfpeak / v io ) v rf = 100 mv p , f = 400 mhz 84 db v rf = 100 mv p , f = 900 mhz 87 v rf = 100 mv p , f = 1800 mhz 90 v rf = 100 mv p , f = 2400 mhz 91 v oh high level output voltage t = 25 c 30 mv -40 c < t< 125 c 70 v ol low level output voltage t = 25 c 30 -40 c < t< 125 c 70 i out i sink (v out = v cc/ ) t = 25 c 15 18 ma -40 c < t< 125 c 14 i source (v out = 0 v) t = 25 c 14 17 -40 c < t< 125 c 12 i cc supply current (per channel, v out = v cc/ /2, r l > 1 m ) t = 25 c 31 40 a -40 c < t< 125 c 40 ac performance gbp gain bandwidth product r l = 10 k , c l = 100 pf 400 khz f u unity gain frequency 300
docid023563 rev 4 11/40 tsz121, tsz122, tsz124 electrical characteristics 40 m phase margin r l = 10 k , c l = 100 pf 53 degrees g m gain margin 19 db sr slew rate (4) 0.19 v/ s t s settling time to 0.1%, v in = 100 mvp-p, r l = 10 k , c l = 100 pf 10 s e n equivalent input noise voltage f = 1 khz f = 10 khz 37 37 c s channel separation f = 100 hz 120 db t init initialization time t = 25 c 50 s -40 c < t< 125 c 100 1. see section 4.5: input offset voltage drift over temperature . input offset measurements are performed on x100 gain configuration. the amplifiers and the gain se tting resistors are at the same temperature. 2. guaranteed by design 3. tested on sc70-5 package 4. slew rate value is calculated as the average between positive and negative slew rates table 5. electrical characteristics at v cc+ = 5 v with v cc- = 0 v, v icm = v cc /2, t = 25 c, and r l = 10 k connected to v cc /2 (unless otherwise sp ecified) (continued) symbol parameter conditions min. typ. max. unit nv hz ----------- -
electrical characteristics tsz121, tsz122, tsz124 12/40 docid023563 rev 4 figure 2. supply current vs. supply voltage figure 3. input offset voltage distribution at v cc = 5 v 0.0 0.0 0.5 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0 3.5 4.0 4.0 4.5 5.0 5.0 5.5 0 0 5 10 10 15 20 20 25 30 30 35 40 40 t=-40c v icm =v cc /2 t=125c t=25c supply current (a) supply voltage (v) -5-4-3-2-1012345 0 10 20 30 40 50 60 t=25c vcc=5v, vicm=2.5v population input offset voltage (v) figure 4. input offset voltage distribution at v cc = 3.3 v figure 5. input offset voltage distribution at v cc = 1.8 v -5-4-3-2-1012345 0 10 20 30 40 50 60 t=25c vcc=3.3v, vicm=1.65v population input offset voltage (v) -5-4-3-2-1012345 0 10 20 30 40 50 60 t=25c vcc=1.8v, vicm=0.6v population input offset voltage (v) figure 6. vio temperature co-efficient distribution (-40 c to 25 c) figure 7. vio temperature co-efficient distribution (25 c to 125 c) -0.030 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0 10 20 30 40 50 60 t=-40c to 25c vcc=5v, vicm=2.5v population input offset voltage drift [v/c] -0.030 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0 10 20 30 40 50 60 t=25c to 125c vcc=5v, vicm=2.5v population input offset voltage drift [v/c]
docid023563 rev 4 13/40 tsz121, tsz122, tsz124 electrical characteristics 40 figure 8. input offset voltage vs. supply voltage f igure 9. input offset voltage vs. input common mode at v cc = 1.8 v 2.0 2.0 2.3 2.5 2.5 2.8 3.0 3.0 3.3 3.5 3.5 3.8 4.0 4.0 4.3 4.5 4.5 4.8 5.0 5.0 -5 -4 -4 -3 -2 -2 -1 0 0 1 2 2 3 4 4 5 t=25c t=-40c t=125c vicm=vcc/2 vio (v) vcc(v) 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 -5 -4 -4 -3 -2 -2 -1 0 0 1 2 2 3 4 4 5 t=25c t=-40c t=125c vcc=1.8v vio (v) vicm (v) figure 10. input offset voltage vs. input common mode at v cc = 2.7 v figure 11. input offset voltage vs. input common mode at v cc = 5.5 v 0.0 0.0 0.2 0.4 0.4 0.6 0.8 0.8 1.0 1.2 1.2 1.4 1.6 1.6 1.8 2.0 2.0 2.2 2.4 2.4 2.6 2.8 2.8 -5 -5 -4 -3 -3 -2 -1 0 0 1 2 3 3 4 5 5 t=25c t=-40c t=125c vcc=2.7v vio (v) vicm (v) 0.0 0.0 0.4 0.8 0.8 1.2 1.6 1.6 2.0 2.4 2.4 2.8 3.2 3.2 3.6 4.0 4.0 4.4 4.8 4.8 5.2 5.6 5.6 -5 -5 -4 -3 -3 -2 -1 0 0 1 2 3 3 4 5 5 t=25c t=-40c t=125c vcc=5.5v vio (v) vicm (v) figure 12. input offset voltage vs. temperature figure 13. v oh vs. supply voltage                     /lplwiru76= 9ff 99lfp 9 ,qsxwriivhwyrowdjh ?9 7hpshudwxuh ?& 1.8 2.0 2.0 2.2 2.4 2.4 2.6 2.8 2.8 3.0 3.2 3.2 3.4 3.6 3.6 3.8 4.0 4.0 4.2 4.4 4.4 4.6 4.8 4.8 5.0 5.2 5.2 5.4 0 0 3 5 5 8 10 10 13 15 15 18 20 20 t=25c t=-40c t=125c rl=10k vicm=vcc/2 output swing (mv from vcc+) vcc (v)
electrical characteristics tsz121, tsz122, tsz124 14/40 docid023563 rev 4 figure 14. v ol vs. supply voltage figure 15. output current vs. output voltage at v cc = 1.8 v 1.8 2.0 2.0 2.2 2.4 2.4 2.6 2.8 2.8 3.0 3.2 3.2 3.4 3.6 3.6 3.8 4.0 4.0 4.2 4.4 4.4 4.6 4.8 4.8 5.0 5.2 5.2 5.4 0 0 3 5 5 8 10 10 13 15 15 18 20 20 t=25c t=-40c t=125c rl=10k vicm=vcc/2 output swing (mv from vcc-) vcc (v) 0.0 0.0 0.3 0.5 0.5 0.8 1.0 1.0 1.3 1.5 1.5 1.8 -30 -20 -20 -10 0 0 10 20 20 30 t=-40c t=25c t=125c t=-40c vcc=1.8v t=125c t=25c output current (ma) output voltage (v) figure 16. output current vs. output voltage at v cc = 5.5 v figure 17. input bias current vs. common mode at v cc = 5 v 0.0 0.0 0.5 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0 3.5 4.0 4.0 4.5 5.0 5.0 5.5 -30 -20 -20 -10 0 0 10 20 20 30 t=-40c t=25c t=125c t=-40c vcc=5.5v t=125c t=25c output current (ma) output voltage (v) 0.0 0.0 0.5 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0 3.5 4.0 4.0 4.5 5.0 5.0 -100 -100 -75 -50 -50 -25 0 0 25 50 50 75 100 100 vcc=5v t=25c iibn iibp iib (pa) common mode voltage (v) figure 18. input bias current vs. common mode at v cc = 1.8 v figure 19. input bias current vs. temperature at v cc = 5 v 0.0 0.0 0.3 0.5 0.5 0.8 1.0 1.0 1.3 1.5 1.5 1.8 -100 -100 -75 -50 -50 -25 0 0 25 50 50 75 100 100 vcc=1.8v t=25c iibn iibp iib (pa) common mode voltage (v) -25 0 02550 50 75 100 100 125 -100 -100 -75 -50 -50 -25 0 0 25 50 50 75 100 100 vcc=5v iibp iibn iib (pa) temperature (c)
docid023563 rev 4 15/40 tsz121, tsz122, tsz124 electrical characteristics 40 figure 20. bode diagram at v cc = 1.8 v figure 21. bode diagram at v cc = 2.7 v 1 10 100 1000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=1.8v, vicm=0.9v, g=-100 rl=10k , cl=100pf, vrl=vcc/2 t=125c t=-40c t=25c phase () 1 10 100 1000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=2.7v, vicm=1.35v, g=-100 rl=10k , cl=100pf, vrl=vcc/2 t=125c t=-40c t=25c phase () figure 22. bode diagram at v cc = 5.5 v figure 23. open loop gain vs. frequency 1 10 100 1000 -40 -20 0 20 40 -250 -200 -150 -100 -50 0 50 100 150 200 250 gain (db) frequency (khz) gain phase vcc=5.5v, vicm=2.75v, g=-100 rl=10k , cl=100pf, vrl=vcc/2 t=125c t=-40c t=25c phase () 0.01 0.1 1 10 100 1000 -20 0 20 40 60 80 100 -20 0 20 40 60 80 100 gain (db) frequency (khz) gain phase vcc=5v, vicm=2.5v, rl=10k , cl=100pf phase () figure 24. positive slew rate vs. supply voltage figure 25. negative slew rate vs. supply voltage 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 5.5 5.5 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 rl=10k , cl=100pf vin: from 0.3v to vcc-0.3v sr calculated from 10% to 90% t=125c t=25c t=-40c positive slew rate (v/s) supply voltage (v) 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 5.5 5.5 -0.3 -0.3 -0.2 -0.2 -0.1 -0.1 0.0 0.0 rl=10k , cl=100pf vin: from vcc-0.3v to 0.3v sr calculated from 10% to 90% t=125c t=25c t=-40c negative slew rate (v/s) supply voltage (v)
electrical characteristics tsz121, tsz122, tsz124 16/40 docid023563 rev 4 figure 26. 0.1 hz to 10 hz noise figure 27. noise vs. frequency 100m 1 10 10 15 20 25 30 35 40 45 50 55 noise density (nv/ (hz)) frequency (hz) vcc = 5.5v vicm=vcc/2 t=25c noise 0.1hz_10hz equivalent to 0.2 vpp 100 1k 10k 20 40 60 80 100 120 140 160 180 200 equivalent input voltage noise (nv/ hz) frequency (hz) vcc=1.8v vcc=3.3v vcc=5.5v vicm=vcc/2 tamb=25c figure 28. noise vs. frequency and temperature figure 29. output overshoot vs. load capacitance 100 1k 10k 20 40 60 80 100 120 140 160 180 200 equivalent input voltage noise (nv/ hz) frequency (hz) 125c 25c -40c vicm=vcc/2 vcc=5.5v 10 100 1000 0 0 5 10 10 15 20 20 25 30 30 35 40 40 vcc=5.5v, 100mvpp, rl=10k overshoot (%) load capacitance (pf) figure 30. small signal figure 31. large signal -10 0 10 20 30 -0.10 -0.10 -0.05 -0.05 0.00 0.00 0.05 0.05 0.10 0.10 vcc = 5.5v rl=10k cl=100pf t=25c output voltage (v) time (s) -100 0 100 200 300 400 500 600 -2.00 -2.00 0.00 0.00 2.00 2.00 vcc = 5.5v rl=10k cl=100pf t=25c output voltage (v) time (s)
docid023563 rev 4 17/40 tsz121, tsz122, tsz124 electrical characteristics 40 figure 32. positive overvoltage recovery at v cc = 1.8 v figure 33. positive overvoltage recovery at v cc = 5 v -100 -50 0 50 100 150 200 250 300 350 400 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -0.20 -0.15 -0.10 -0.05 0.00 vout (v) time (s) vout vin vcc=1.8v, vicm=0.9v, g=101 rl=10k , cl=100pf vin (v) -100 -50 0 50 100 150 200 250 300 350 400 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -0.20 -0.15 -0.10 -0.05 0.00 vout (v) time (s) vout vin vcc=5.5v, vicm=2.75v, g=101 rl=10k , cl=100pf vin (v) figure 34. negative overvoltage recovery at v cc = 1.8 v figure 35. negative overvoltage recovery at v cc = 5 v -100 -50 0 50 100 150 200 250 300 350 400 -1.0 -0.5 0.0 0.5 1.0 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 vout (v) time (s) vout vin vcc=1.8v, vicm=0.9v, g=101 rl=10k , cl=100pf vin (v) -100 -50 0 50 100 150 200 250 300 350 400 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 vout (v) time (s) vout vin vcc=5.5v, vicm=2.75v, g=101 rl=10k , cl=100pf vin (v) figure 36. psrr vs. frequency figure 37. output impedance vs. frequency 10 100 1000 10000 100000 1000000 0 -20 -40 -60 -80 -100 -psrr +psrr vcc=5.5v, vicm=2.75v, g=1 rl=10k , cl=100pf, vripple=100mvpp psrr (db) frequency (hz) 100 1k 10k 100k 1m 200 400 600 800 1000 1200 1400 1600 1800 2000 vcc=2.7v to 5.5v osc level=30mv rms g=1 ta=25 c output impedance ( ) frequency (hz)
application information tsz121, tsz122, tsz124 18/40 docid023563 rev 4 4 application information 4.1 operation theory the tsz121, tsz122, and tsz124 are high pr ecision cmos devices. they achieve a low offset drift and no 1/f noise thanks to their chopper architecture. ch opper-stabilized amps constantly correct low-frequency errors across the inputs of the amplifier. chopper-stabilized amplifiers ca n be explained with respect to: ? time domain ? frequency domain 4.1.1 time domain the basis of the chopper amplifier is realized in two steps. these steps are synchronized thanks to a clock running at 400 khz. figure 38. block diagram in the time domain (step 1) figure 39. block diagram in the time domain (step 2) figure 38 shows step 1, the first clock cycle, where v io is amplified in the normal way. figure 39 shows step 2, the second clock cycle, where chop1 and chop2 swap paths. at this time, the v io is amplified in a reverse way as compared to step 1. at the end of these two steps, the average v io is close to zero. the a2(f) amplifier has a small impact on the v io because the v io is expressed as the input offset and is consequen tly divided by a1(f). 9 rxw $ i  )l owhu $ i 9 lqs  9 lqq &krs  &krs  9 rxw $ i )lowhu $ i 9 lqs  9 lqq &krs &krs
docid023563 rev 4 19/40 tsz121, tsz122, tsz124 application information 40 in the time domain, the offset part of the output signal before filtering is shown in figure 40 . figure 40. v io cancellation principle the low pass filter averages the output value resulting in the cancellation of the v io offset. the 1/f noise can be considered as an of fset in low frequency and it is canceled like the v io , thanks to the chopper technique. 4.1.2 frequency domain the frequency domain gives a more accurate vision of chopper-stabilized amplifier architecture. figure 41. block diagram in the frequency domain the modulation technique transpos es the signal to a higher frequency where there is no 1/f noise, and demodulate it back after amplification. 1. according to figure 41 , the input signal v in is modulated once (chop1) so all the input signal is transposed to the high frequency domain. 2. the amplifier adds its own error (v io (output offset voltage) + the noise v n (1/f noise)) to this modulated signal. 3. this signal is then demodulated (chop2 ), but since the noise and the offset are modulated only once, they are transposed to the high frequency, leaving the output signal of the amplifier without any offset and low frequency noise. consequently, the input signal is amplified with a very low offset and 1/f noise. 4. to get rid of the high frequency part of the output signal (which is useless) a low pass filter is implemented. to further suppress the remaining ripple down to a desired level, another low pass filter may be added externally on the output of the tsz121, tsz122, or tsz124 device. 6whs 6whs 6whs 6whs 6whs 6whs 9 lr 9 lr  7l ph  9 lqq  9 l qs  9 rv  9 q &krs  $ i  &krs   )lowhu $ i  9 rxw      
application information tsz121, tsz122, tsz124 20/40 docid023563 rev 4 4.2 operating voltages tsz121, tsz122, and tsz124 devices can operate from 1.8 to 5.5 v. the parameters are fully specified for 1.8 v, 3.3 v, and 5 v power supplies. however, the parameters are very stable in the full v cc range and several characterization curves show the tsz121, tsz122, and tsz124 device characteristics at 1.8 v and 5.5 v. additionally, the main specifications are guaranteed in extended temperature ranges from -40 to +125 c. 4.3 input pin voltage ranges tsz121, tsz122, and tsz124 devices have internal esd diode protection on the inputs. these diodes are connected be tween the input and each supply rail to protect the input mosfets from electrical discharge. if the input pin voltage exceeds the power supply by 0.5 v, the esd diodes become conductive and excessive current can flow thro ugh them. without limitation this over current can damage the device. in this case, it is important to limit the current to 10 ma, by adding resistance on the input pin, as described in figure 42 . figure 42. input current limitation 4.4 rail-to-rail input tsz121, tsz122, and tsz124 devices have a rail-to-rail input, and the input common mode range is extended from v cc- - 0.1 v to v cc+ + 0.1 v. 76= 76= 76= 9 lq 5 9 76=76=76= 9 rxw    
docid023563 rev 4 21/40 tsz121, tsz122, tsz124 application information 40 4.5 input offset voltage drift over temperature the maximum input voltage drift variation over te mperature is defined as the offset variation related to the offset value measured at 25 c . the operational amplifier is one of the main circuits of the signal conditioning chain, and th e amplifier input offset is a major contributor to the chain accuracy. the signal chain a ccuracy at 25 c can be compensated during production at application level. the maximum input voltage drift over temperature enables the system designer to anti cipate the effect of temperature variations. the maximum input voltage drift over temperature is computed using equation 1 . equation 1 where t = -40 c and 125 c. the tsz121, tsz122, and tsz124 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a c pk (process capability index) greater than 1.3. 4.6 rail-to-rail output the operational amplifier output levels ca n go close to the rails: to a maximum of 30 mv above and below the rail when connected to a 10 k resistive load to v cc /2. 4.7 capacitive load driving large capacitive loads can cause stability problems. incr easing the load capacitance produces gain peaking in the frequency resp onse, with overshoot and ringing in the step response. it is usually considered that with a gain peaking higher than 2.3 db an op amp might become unstable. generally, the unity gain config uration is the worst case for stability and the ability to drive large capacitive loads. figure 43 and figure 44 show the serial resistor that must be added to the output, to make a system stable. figure 45 shows the test configuration using an isolation resistor, riso. v io t ----------- - max v io t () v io 25 c () ? t25 c ? --------------------------------------------------- =
application information tsz121, tsz122, tsz124 22/40 docid023563 rev 4 figure 45. test configuration for riso 4.8 pcb layout recommendations particular attention must be paid to the layout of the pcb, tracks connected to the amplifier, load, and power supply. the power and ground traces are critical as they must provide adequate energy and grounding for all circuits. good practice is to use short and wide pcb traces to minimize voltage drops and parasitic inductance. in addition, to minimize parasitic impedance ov er the entire surface, a multi-via technique that connects the bottom and top layer ground pl anes together in many locations is often used. the copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance. figure 43. stability criteria with a serial resistor at v dd = 5 v figure 44. stability criteria with a serial resistor at v dd = 1.8 v 0.1 1 10 100 1,000 10 100 1000 10000 stable vcc=5v, vicm=2.5v, t=25c, rl=10 k , g=1 unstable serial resistor (ohm) capacitive load (nf) 0.1 1 10 100 1,000 10 100 1000 10000 stable vcc=1.8v, vicm=0.9v, t=25c, rl=10 k , g=1 unstable serial resistor (ohm) capacitive load (nf) & ordg 9 ,1   9 && 5lvr *$06&% n? 9 && 9 287
docid023563 rev 4 23/40 tsz121, tsz122, tsz124 application information 40 4.9 optimized appli cation recommendation tsz121, tsz122, and tsz124 devices are base d on chopper architecture. as they are switched devices, it is strongly recommended to place a 0.1 f capacitor as close as possible to the supply pins. a good decoupling has several advantages for an application. first, it helps to reduce electromagnetic interference. due to the modulation of the chopper, the decoupling capacitance also helps to reject the sm all ripple that may appear on the output. tsz121, tsz122, and tsz124 devices have been optimized for use with 10 k in the feedback loop. with this, or a higher value of resistance, these devices offer the best performance. 4.10 emi rejection ration (emirr) the electromagnetic interference (emi) rejection ratio, or emirr, describes the emi immunity of operational amplifiers. an adverse e ffect that is common to many op amps is a change in the offset voltage as a re sult of rf signal rectification. the tsz121, tsz122, and tsz124 have been sp ecially designed to mi nimize susceptibility to emirr and show an extremely good sensitivity. figure 46 shows the emirr in+ of the tsz121, tsz122, and tsz124 measured from 10 mhz up to 2.4 ghz . figure 46. emirr on in+ pin 10 100 1000 0 20 40 60 80 100 120 vcc=5.5v, g=1 prf=-10dbm emirr in+(db) frequency (mhz)
application information tsz121, tsz122, tsz124 24/40 docid023563 rev 4 4.11 application examples 4.11.1 oxygen sensor the electrochemical sensor creates a current pr oportional to the concentration of the gas being measured. this current is converted into voltage thanks to r resistance. this voltage is then amplified by tsz121, tsz122, and tsz124 devices (see figure 47 ). figure 47. oxygen sensor principle schematic the output voltage is calculated using equation 2 : equation 2 as the current delivered by the o2 sensor is extremely low, the impact of the v io can become significant with a tradit ional operational amplifier. the use of the chopper amplifier of the tsz121, tsz122, or tsz124 is perfect for this application. in addition, using tsz121, tsz122, or tsz124 devices for the o2 sensor application ensures that the measurement of o2 concentrat ion is stable even at different temperature thanks to a very good v io / t.     2bvhqvru 5 5 9 && 76=76=76= 9 rxw , v out i ( rv io ) r 2 r 1 ------ - 1 + ?? ?? ? =
docid023563 rev 4 25/40 tsz121, tsz122, tsz124 application information 40 4.11.2 precision instrumentation amplifier the instrumentation amplifier uses th ree op amps. the circuit, shown in figure 48 , exhibits high input impedance, so that the source imped ance of the connected sensor has no impact on the amplification. figure 48. precision instrume ntation amplifier schematic the gain is set by tuning the rg resistor. with r1 = r2 and r3 = r4, the output is given by equation 3 . equation 3 the matching of r1, r2 and r3, r4 is important to ensure a good common mode rejection ratio (cmr). 76=[ 9 9 5j 5i 5i 5 5 5 5 76=[ 9 rxw 76=[       v out v 2 v 1 ? () r 4 r 2 ------ - 2r f r g --------- 1 + ?? ?? ? ? =
application information tsz121, tsz122, tsz124 26/40 docid023563 rev 4 4.11.3 low-side current sensing power management mechanisms are found in mo st electronic systems. current sensing is useful for protecting applications. the low-side current sensing method consists of placing a sense resistor between the load and the circ uit ground. the resulting voltage drop is amplified using tsz121, tsz122, and tsz124 devices (see figure 49 ). figure 49. low-side current sensing schematic v out can be expressed as follows: equation 4 assuming that r f2 = r f1 = r f and r g2 = r g1 = r g , equation 4 can be simplified as follows: equation 5 the main advantage of using the chopper of the tsz121, tsz122, and tsz124, for a low- side current sensing, is that the errors due to v io and i io are extremely low and may be neglected. therefore, for the same accuracy, the shunt resistor can be chosen with a lower value, resulting in lower po wer dissipation, lower drop in th e ground path, and lower cost. particular attention must be paid on the matching and precision of r g1 , r g2 , r f1 , and r f2 , to maximize the accuracy of the measurement.     5 vkxqw 5j 5j & 5i 9 9 rxw 5i 76=76=76= , , q , s v out r shunt i1 r g2 r g2 r f2 + ------------------------ - ? ? 1 r f1 r g1 --------- - + ?? ?? ? ? ? i p r g2 r f2 r g2 r f2 + -------------------------------- ?? ?? 1 r f1 r g1 --------- - + ?? ?? i n r f1 v io 1 r f1 r g1 --------- - + ?? ?? ? ? + = v out r shunt i r f r g ------ - ? ? ? ? v io 1 r f r g ------ - + ?? ?? ? r f i io + =
docid023563 rev 4 27/40 tsz121, tsz122, tsz124 package information 40 5 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark.
package information tsz121, tsz122, tsz124 28/40 docid023563 rev 4 5.1 sc70-5 package information figure 50. sc70-5 package mechanical drawing table 6. sc70-5 package mechanical data symbol dimensions millimeters inches min. typ. max. min. typ. max. a 0.80 1.10 0.032 0.043 a1 00.10 0.004 a2 0.80 0.90 1.00 0.032 0.035 0.039 b 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 d 1.80 2.00 2.20 0.071 0.079 0.087 e 1.80 2.10 2.40 0.071 0.083 0.094 e1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 l 0.26 0.36 0.46 0.010 0.014 0.018 < 0 8 0 8 seating plane gauge plane dimensions in mm side view top view coplanar leads
docid023563 rev 4 29/40 tsz121, tsz122, tsz124 package information 40 5.2 sot23-5 package information figure 51. sot23-5 package mechanical drawing table 7. sot23-5 package mechanical data symbol dimensions millimeters inches typ. min. max. typ. min. max. a 1.45 0.057 a1 0.00 0.15 0.000 0.006 a2 1.15 0.90 1.30 0.045 0.035 0.051 b 0.30 0.50 0.012 0.020 c 0.08 0.22 0.003 0.009 d 2.90 0.114 e 2.80 0.110 e1 1.60 0.063 e 0.95 0.037 e1 1.90 0.075 l 0.45 0.30 0.60 0.018 0.012 0.024 408408 627 ( h  [e h ' & v ( / $ $ [ & $
package information tsz121, tsz122, tsz124 30/40 docid023563 rev 4 figure 52. sot23-5 footprint recommendation 627i         
docid023563 rev 4 31/40 tsz121, tsz122, tsz124 package information 40 5.3 dfn8 2x2 pack age information figure 53. dfn8 2x2 package mechanical drawing figure 54. dfn8 2x2x0.6 mm package mechanical data (pitch 0.5 mm) ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.51 0.55 0.60 0.020 0.022 0.024 a1 0.05 0.002 a3 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 d 1.85 2.00 2.15 0.073 0.079 0.085 d2 1.45 1.60 1.70 0.057 0.063 0.067 e 1.85 2.00 2.15 0.073 0.079 0.085 e2 0.75 0.90 1.00 0.030 0.035 0.039 e 0.50 0.020 l 0.425 0.017 ddd 0.08 0.003 $06b9
package information tsz121, tsz122, tsz124 32/40 docid023563 rev 4 figure 55. dfn8 2x2 footprint recommendation $06b9 pp pp pp pp pp pp
docid023563 rev 4 33/40 tsz121, tsz122, tsz124 package information 40 5.4 miniso8 package information figure 56. miniso8 package mechanical drawing table 8. miniso8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 1.1 0.043 a1 0 0.15 0 0.006 a2 0.75 0.85 0.95 0.030 0.033 0.037 b 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 d 2.80 3.00 3.20 0.11 0.118 0.126 e 4.65 4.90 5.15 0.183 0.193 0.203 e1 2.80 3.00 3.10 0.11 0.118 0.122 e 0.65 0.026 l 0.40 0.60 0.80 0.016 0.024 0.031 l1 0.95 0.037 l2 0.25 0.010 k 0 8 0 8 ccc 0.10 0.004
package information tsz121, tsz122, tsz124 34/40 docid023563 rev 4 5.5 so8 package information figure 57. so8 package mechanical drawing figure 58. so8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a1.750.069 a1 0.10 0.25 0.004 0.010 a2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 d 4.80 4.90 5.00 0.189 0.193 0.197 e 5.80 6.00 6.20 0.228 0.236 0.244 e1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 l1 1.04 0.040 k 0 8 1 8 ccc 0.10 0.004
docid023563 rev 4 35/40 tsz121, tsz122, tsz124 package information 40 5.6 qfn16 3x3 package information figure 59. qfn16 3x3 package mechanical drawing *$06&%
package information tsz121, tsz122, tsz124 36/40 docid023563 rev 4 figure 60. qfn16 3 x 3 mm package mechanical data (pitch 0.5 mm) ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.80 0.90 1.00 0.031 0.035 0.039 a1 0 0.05 0 0.002 a3 0.20 0.008 b 0.18 0.30 0.007 0.012 d 2.90 3.00 3.10 0.114 0.118 0.122 d2 1.50 1.80 0.059 0.071 e 2.90 3.00 3.10 0.114 0.118 0.122 e2 1.50 1.80 0.059 0.071 e 0.50 0.020 l 0.30 0.50 0.012 0.020
docid023563 rev 4 37/40 tsz121, tsz122, tsz124 package information 40 5.7 tssop14 package information figure 61. tssop14 package mechanical drawing table 9. tssop14 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a1.200.047 a1 0.05 0.15 0.002 0.004 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 d 4.90 5.00 5.10 0.193 0.197 0.201 e 6.20 6.40 6.60 0.244 0.252 0.260 e1 4.30 4.40 4.50 0.169 0.173 0.176 e 0.65 0.0256 l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1.00 0.039 k 0 8 0 8 aaa 0.10 0.004
ordering information tsz121, tsz122, tsz124 38/40 docid023563 rev 4 6 ordering information table 10. order codes order code temperature range package packaging marking tsz121ict -40 to +125 c sc70-5 tape and reel k44 tsz121ilt sot23-5 k143 tsz122iq2t dfn8 2x2 k33 tsz122ist miniso8 k208 tsz122idt so8 tsz122i TSZ124IQ4T qfn16 3x3 k193 tsz124ipt tssop14 tsz124i tsz121iylt (1) 1. qualification and characterization according to aec q100 and q003 or equi valent, advanced screening according to aec q001 & q 002 or equivalent are on-going. -40 to +125 c automotive grade sot23-5 k192 tsz122iyst (2) 2. qualified and characterized according to aec q100 and q003 or equivalent, advanced screening according to aec q001 & q 002 or equivalent. miniso8 k192 tsz124iypt (1) tssop14 tsz124iy
docid023563 rev 4 39/40 tsz121, tsz122, tsz1 24 revision history 40 7 revision history table 11. document revision history date revision changes 16-aug-2012 1 initial release. 25-apr-2013 2 added dual and quad products (tsz122 and tsz124 respectively) updated title added following packages: dfn8 2x2, miniso8, qfn16 3x3, tssop14. updated features added benefits and related products updated description updated table 1 (r thja , esd) updated table 3 (v io , v io / t, cmr, a vd , i cc , e n , and c s ) updated table 4 (v io , v io / t, cmr, i cc , e n , and c s ) updated table 5 (v io , v io / t, cmr, svr, emirr, i cc , t s , e n , and c s ). updated curves of section 3: electrical characteristics added section 4.7: capacitive load small update section 4.9: optimized application recommendation (capacitor). added section 4.10: emi rejection ration (emirr) updated table 10: order codes 11-sep-2013 3 added so8 package for commercial part number tsz122idt related products : added hyper links for tsv71x and tsv73x products. table 1 : updated cdm information figure 6 , figure 7 : updated x-axes titles figure 12 : updated x-axis and y-axis titles figure 19 : updated title figure 26 : updated x-axis (logarithmic scale) figure 27 and figure 28 : updated y-axis titles 23-may-2014 4 table 1 : updated esd information table 5 : added footnote 3 table 10: order codes : added automotive qualification footnotes 1 and 2 ; updated marking of tsz122ist. updated disclaimer
tsz121, tsz122, tsz124 40/40 docid023563 rev 4 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. st products are not designed or authorized for use in: (a) safety critical applications such as life supporting, active implanted devices or systems wi th product functional safety requirements; (b) aeronautic applications; (c) automotive applications or environments, and/or (d) aerospace applications or environments. where st products are not designed for such use, the purchaser shall use products at purchaser?s sole risk, even if st has been informed in writing of such usage, unless a product is expressly designated by st as being intended for ?automotive, automotive safety or medical? industry domains according to st product design specifications. products formally escc, qml or jan qualified are deemed suitable for use in aerospace by the corresponding governmental agency. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2014 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TSZ124IQ4T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X